
Module 1: Creating convenient library for transmitting 
and receiving data using STM32’s UART 

UART 



Through this module, you’ll learn how to use 

STM32’s UART the right way. Everything you’ve 

seen before is garbage! Just trash it… We will 

create a serial library which is fast, reliable and 

can be easily reused in different projects.  

Multi-port, powered by HAL and compatible 

with any STM32 microcontroller series. 



 

Introduction 

Lesson A: The right way 

Lesson B: Configuring UART ports 

Lesson C: Simple receive and transmit experiment 

Lesson D: Receiving single byte 

Lesson E: Calculating available unprocessed bytes count 

Lesson F: Receiving multiple bytes 

Lesson G: Transmitting single or multiple bytes  

Lesson H: Creating UART library and it’s functions 

Lesson I: Additional features 

Lesson J: UART library usage examples 

Introduction to next modules 

Where to download 



Lesson A: 

There are many STM32 UART myths created by 

incompetent people. E.g., that DMA can’t be 

used with variable-size data packets and other 

nonsense.  

Avoiding DMA peripheral is one of the worst 

things you can do. It is much simpler to make 

really good UART code when DMA is used. 



Never lose a byte! Many will say that their UART code 
is reliable, good, etc. Do you believe it? 

We will perform two simple tests to ensure that our 
serial library is reliable:  

*Loopback test to ensure that each byte is sent and 
received correctly. 

*Hot-plug test to ensure that communication can be 
resumed after cable is re-connected. 



Sending and receiving should be simple. We need only 
these functions: 

*Function to send and receive single byte 

*Function to send and receive data arrays (this includes 
sending/receiving of 16-bit and 32-bit words) 

*Function to check if new data available 

*Function to check if transfer is finished 

*Some other functions will be provided in next modules 



Our serial library must be portable across multiple 
STM32 series. Generally, we should consider 
portability across microcontrollers from different 
manufactures.  

E.g., porting code to Microchip’s PIC32 would be 
complicated if our library heavily relies on STM32’s 
“idle” interrupt. Thus, we know what functions to 
avoid if we want our library to be more portable. 



We need to be able to send or receive streams 

of data without blocking other peripherals, such 

as DAC, ADC, SPI, etc.. That’s why data should 

be sent or received in background using DMA. 



Lesson B: 

First, we will enable all available serial ports 

and their transmit and receive DMA requests. 

Optionally, you can set different Baud Rate 

under “Parameter Settings” tab (default is 

115200 Bits/s). 



Open “Pinout & Configuration” tab → Connectivity → USART1 →  Set 

“Mode” to “Asynchrous”. Do the same for USART2 and USART3. 

 



Open USART1 → “NVIC Settings” tab → check “USART1 global 

interrupt”. Use the same way to enable “global interrupt” for 

USART2 and USART3. 

 



Open USART1 → ”DMA Settings” tab → click ”Add” to add a new 

line. Select “USART1_RX” from drop-down list. Repeat the same 

for USART2 and USART3. 



With USART1_RX DMA Request selected, set “Mode” to “Circular” 

under “DMA Request Settings”. Repeat the same for USART2 and 

USART3. 



Open USART1 → ”DMA Settings” tab → click ”Add” to add a new 

line. Select “USART1_TX” from drop-down list. Repeat the same 

for USART2 and USART3. Keep “Mode” normal for TX. 

 



Lesson C: 

In previous lesson, we’ve configured three UART ports 
and their DMA requests. STM32CubeIDE can generate 
all required code to initialize and work with these 
ports using HAL functions.  

In this lesson, we will learn how to receive and 
transmit UART data using HAL DMA functions. We’ll 
evaluate how circular DMA buffer works and start to 
build our serial library. 



We start by defining very small 4-element buffer in main.c: 

 

 

 

And start receiving process using DMA: 

 

/* USER CODE BEGIN PV */ 
#define UART_BUFFER_SIZE 4 
__IO uint8_t uartBuffer[UART_BUFFER_SIZE]; 

/* USER CODE BEGIN 2 */ 
memset((uint8_t *) &uartBuffer, 0, sizeof(uartBuffer)); // Clear buffer 
HAL_UART_Receive_DMA(&huart1,                    // HAL UART handle 
                     (uint8_t *) &uartBuffer,    // RX buffer pointer 
                     UART_BUFFER_SIZE);          // RX buffer size 



For simplicity, we will send uartBuffer[] back each second in 

main() function loop: 

 

 

 

 

 

Note that we use same array for transmit and receive. 

/* USER CODE BEGIN WHILE */ 
while (1) 
{ 
    HAL_UART_Transmit_DMA(&huart1,                 // HAL UART handle 
                          (uint8_t *)&uartBuffer,  // TX buffer pointer 
                          UART_BUFFER_SIZE);       // TX buffer size 
    HAL_Delay(1000); // 1000 millisecond delay 
… 



Microcontroller sends contents of 4-byte long array uartBuffer to 

UART1 each second. That’s how terminal window will look after 7 

seconds: 

 

 

 

 

Image on the right illustrates memory contents of uartBuffer array. 

uartBuffer array 

00 00 00 00 



Let’s send single byte to STM32 board. In this example, we will 

send 0x55. Right after we sent this byte (“Tx: 55” line), received 

data changed to “Rx: 55 00 00 00” instead of “Rx: 00 00 00 00”. 

 

 

 

 

Image on the right demonstrates changes made to uartBuffer. 

uartBuffer array 

55 00 00 00 



Let’s send one more byte. This time we will send 0xFF. Images 

below shows that memory still contains previously received byte 

and 0xFF right next to it: 

 

 

 

 

Right image show that our array still has two “free” elements. 

uartBuffer array 

55 FF 00 00 



Now, let’s send three bytes: 0x01, 0x02 and 0x03. There are only 

two “free” elements left, but because we use Circular Mode, DMA 

wraps around and continues to write from the beginning: 

 

 

 

 

Note how 0x55 byte was overwritten by 0x03 (gray square). 

uartBuffer array 

03 FF 01 02 



Empty buffer → Received “0x55” → “0xFF” → “0x01 0x02 0x03” 

uartBuffer is empty 

00 00 00 00 

Received “0x55” 

55 00 00 00 

Received “0xFF” 

55 FF 00 00 

Received “0x01 0x02 0x03” 

03 FF 01 02 



Here is what should be noted: 

* We started receiving by a single call to 
HAL_UART_Receive_DMA(). There is no need to restart DMA, 
because all received bytes will arrive to uartBuffer array. 

* There is no need to know arriving data size. We only need a 
receiving buffer that is big enough to accept largest packet.  

* We need to copy or process received data before it’s 
overwritten by newly arriving bytes. 

* We need to keep track of receiving DMA write pointer. 



Lesson D: 

You’ve probably already noticed that receiving data 

using DMA’s circular buffer is much simpler than with 

interrupts. It’s because all arriving bytes are 

automatically placed to receiving array by DMA. 

Now we need to create algorithm that extracts 

unprocessed bytes from circular buffer and ignores 

processed bytes. 



We can find receiving DMA current position from NDTR “number of 

data” register. This register indicates how many bytes are not yet 

transferred by DMA buffer. 

Right after reset, NDTR is equal to 4 (value of UART_BUFFER_SIZE 

from previous lesson). NDTR decreases by one for each arriving 

byte, e.g. becomes equal to 3, 2, 1 and resets back to 4 after last 

element is written. Formula for calculating current position is: 

 
Current DMA position = UART_BUFFER_SIZE - NDTR 



If NDTR is 4, DMA will place arriving byte in uartBuffer[0] and 

decrease NDTR by one. 

If NDTR is 3, DMA will place arriving byte in uartBuffer[1] and 

decrease NDTR by one. 

If NDTR is 2, DMA will place arriving byte in uartBuffer[2] and 

decrease NDTR by one. 

If NDTR is 1, DMA will place arriving byte in uartBuffer[3] and 

resets NDTR value back to 4 (NDTR value minimal value is 1) 



In other words, for 4-element array NDTR changes like this: 

4 → 3 → 2 → 1 → 4 → 3 → 2 → 1 → 4 → 3 → … 

Arrived bytes will be written to the following array elements: 

0 → 1 → 2 → 3 → 0 → 1 → 2 → 3 → 0 → 1 → … 

Code for calculating DMA position (dmaPos) would be: 

 

 
#define UART_BUFFER_SIZE 4 
… 
dmaPos = UART_BUFFER_SIZE - huart1.hdmarx->Instance->CNDTR; 



We need to define two variables.  

 

 

* First variable is dmaPos. It’s an array index at which DMA will 
place next arriving byte. This variable value is calculated using 
formula from previous step. 

* Second variable is rxPos. If this variable is not equal to dmaPos, 
this will indicate that one or more bytes arrived since our last 
check and should be processed. 

uint16_t dmaPos;  // DMA’s current RX position (receive buffer index) 
uint16_t rxPos=0; // Our’s current RX position (receive buffer index) 



With these two variables, extracting separate bytes from circular 

array can be done using following code: 

 

 

 

 

 

Note that this code should be called repeatedly in main loop. 

 

// Get DMA current position 
dmaPos=UART_BUFFER_SIZE-huart1.hdmarx->Instance->CNDTR; 
 
if (dmaPos!=rxPos) // DMA position differs from last processing position 
{ 
    uint8_t rxByte=uartBuffer[rxPos];     // Get single byte 
    rxPos++;                              // Increase processing position 
    if (rxPos==UART_BUFFER_SIZE) rxPos=0; // Reached end of array 
} 



Main purpose of this algorithm is to extract and process single 

bytes from data headers or small data packets. E.g., we can use 

this approach to process two first bytes of following data packet: 

 

 

 

 

where 0xFF is some command and 0x05 is data length. Following 

five bytes 0xAA, 0xBB, 0xCC, 0xDD and 0xEE can be processed 

using more efficient approach with copying 5 bytes at once. 

 

Incoming data packet 

CC DD EE FF 05 AA BB 



Let’s check if data is received correctly by sending it back to the 

computer: 

// Get DMA current position 
dmaPos=UART_BUFFER_SIZE-huart1.hdmarx->Instance->CNDTR; 
 
if (dmaPos!=rxPos) // DMA position differs from last processing position 
{ 
    uint8_t rxByte=uartBuffer[rxPos];     // Get single byte 
    rxPos++;                              // Increase processing position 
    if (rxPos==UART_BUFFER_SIZE) rxPos=0; // Reached end of array 
 
    // Sending received byte back to computer 
    HAL_UART_Transmit_DMA(&huart1, (uint8_t *)&rxByte, 1); 
} 



If you test this code, you will notice that some bytes are not sent 

back. E.g., if you send “0x01 0x02 0x03”, microcontroller only 

answers with “0x01 0x03”, and “0x02” byte is lost. That’s 

happens when HAL_UART_Transmit_DMA is called before previous 

transmitting DMA transfer is complete.  

In the next lesson, we will fix this issue by adding check for DMA 

transfer completion. 



Lesson E: 

All incoming bytes are automatically placed to 

circular buffer by DMA peripheral. Our algorithm 

needs to extract those bytes from circular buffer 

and keep track of dmaPos and rxPos values. 

Receiving multiple bytes requires us to deal with 

split data packets. Splitting occures when data 

packet crosses boundary of circular buffer. 



Before we start with length algorithm, let’s examine how circular 

buffer is filled with data and how indexes change over time: 

 

 

 

 

As you can see, dmaPos points to array element that is going to be 

written next. rxPos will be altered later by our processing code. 

1. After reset 
 
 
 
 

dmaPos=0, rxPos=0 

00 00 00 00 

2. Two bytes received 
 
 
 
 

dmaPos=2, rxPos=0 

AA BB 00 00 

3. One more byte received 
 
 
 
 

dmaPos=3, rxPos=0 

AA BB CC 00 



Calculation should be done for two different cases. First case is 

when received data packet is not split by circular buffer boundary. 

In this case available data length is calculated by subtracting our 

“processing” position from DMA position index: 

uint16_t dataLen=0; 
 
if (dmaPos>rxPos) // If DMA position is greater than processing position 
{ 
    dataLen=dmaPos-rxPos; // difference gives unprocessed data length 
} 



Second case is when received data packet is split between ending 

and beginning of circular buffer. In this case available data length 

calculated different way: 

uint16_t dataLen=0; 
 
if (dmaPos<rxPos) // If DMA position is less than processing position 
{ 
    dataLen=UART_BUFFER_SIZE-rxPos; // calculating “tail” length 
    dataLen+=dmaPos;                // adding “head” length 
} 



Following images illustrate how 3-byte data packet “DD EE FF” 

will be written to DMA receive buffer in first and second case: 

 

 

 

In the second case (right) 3-byte data packet is split by 4-byte 

circular array boundary. And data length calculation for this case: 

 
 
 
 

dmaPos=3 > rxPos=0 

DD EE FF ?? 

 
 
 
 

dmaPos=2 < rxPos=3 

EE FF ?? DD 

// dataLen = UART_BUFFER_SIZE – rxPos + dmaPos = 4 – 3 + 2 = 3 



There is a single case when data packet is considered split when 

it’s not. This confusing case results from the fact that our indexes 

indicate elements that’s going to be written or processed next.  

 

 

 

In this case, dmaPos=0 and “head” length is zero, so calculated 

data length is still correct and equals to 3: 

 

 

 

 
 
 
 

dmaPos=0, rxPos=1 

?? DD EE FF 

// dataLen = UART_BUFFER_SIZE – 1 + dmaPos = 4 – 1 + 0 = 3 



Lesson F

In previous step, we calculated amount of unprocessed data 
length which is available in circular buffer. Our receiving 
function will 

* Check if there is enough unprocessed bytes in circular array. 

* Copy required amount to destination array. 

* Update rxPos variable. 

First, we need to add temporary buffer for processed data and 
variable which tells how much bytes we need to process: 

 
__IO uint8_t destBuffer[UART_BUFFER_SIZE]; // temporary buffer 
uint16_t needLen=3;                        // need to receive three bytes 



As with available data length calculation, there are two cases for 

receiving process. If data is not split (normal data packet): 

if (dataLen>=needLen) // do we have enough amount of unprocessed bytes? 
{ 
    if(rxPos+needLen-1<UART_BUFFER_SIZE) // if data packet is not split 
    { 
        memmove((uint8_t *)&destBuffer[0], // destination 
        (uint8_t *)&uartBuffer[rxPos],     // source 
        needLen);                          // length 
    } 
    rxPos+=needLen; // update our buffer “processing” position  
    if (rxPos>=UART_BUFFER_SIZE) { rxPos-=UART_BUFFER_SIZE;} 
} 



In second case, packet is restored from two separate pieces: 

if(rxPos+needLen-1<UART_BUFFER_SIZE) // if data packet is not split 
{ 
    memmove((uint8_t *)&destBuffer[0],(uint8_t *)&uartBuffer[rxPos],needLen); 
} 
else // if data packet is split (second case) 
{ 
    uint16_t tailLen=UART_BUFFER_SIZE-rxPos; // “tail” length calculation 
    uint16_t headLen=needLen-tailLen;        // “head” length calculation 
    // Copying “tail” and “head” parts separately: 
    memmove((uint8_t *)&destBuffer[0],(uint8_t *)&uartBuffer[rxPos],tailLen); 
    memmove((uint8_t *)&destBuffer[tailLen],(uint8_t )&uartBuffer[0],headLen);  
} 



Lesson G: 

Transmitting code is much simpler than receiving 
code. In most cases, we do not need a separate 
transmit buffer and can send variables and arrays 
directly by passing their pointers to 
HAL_UART_Transmit_DMA() function.  

The only thing we need to ensure is this data is not 
altered by our program before transmission is 
completed. 



We can check if transmission is complete by reading USART_SR_TC 

bit of UART status register: 

 

 

 

Note that transmission complete check while() loop can be placed 

before HAL_UART_Transmit_DMA() to achieve non-blocking 

operation. In such cases we must guarantee that rxByte remains 

unchanged before transfer is complete. 

    // Sending received byte back to computer 
    HAL_UART_Transmit_DMA(&huart1, (uint8_t *)&rxByte, 1); 
 
    // Wait for current transmission complete bit in UART status register 
    while (READ_BIT(huart1.Instance->SR,USART_SR_TC)==0) {asm("nop");} 



Here is non-blocking example: 

 

 

 

 

 

 

We will implement both approaches in our UART library. 

    // Wait until previous transmission is complete 
    while (READ_BIT(huart1.Instance->SR,USART_SR_TC)==0) {asm("nop");} 
 
    // Sending received byte back to computer 
    HAL_UART_Transmit_DMA(&huart1, (uint8_t *)&rxByte, 1); 
 
    // We shouldn’t change rxByte value below, 
    // because it is uncertain if DMA transfer is finished 



Transmitting multiple bytes is very similar: 

 

 

 

If data transmission fails, it is usually caused by placing 

transmitting data (rxByte or someArray[]) in non-DMA memory, a 

memory area which can’t be accessed by DMA peripheral. 

HAL_UART_Transmit_DMA(&huart1,               // HAL UART handle 
                      (uint8_t *)&someArray, // TX data pointer 
                      sizeof(someArray));    // TX data size 



After required amount of bytes is detected and copied to 

temporary destBuffer[] array, we can send this data back to the 

computer using following code: 

if (dataLen>=needLen) // do we have enough data? 
{ 
    // send temporary buffer to computer 
    HAL_UART_Transmit_DMA(&huart1, (uint8_t *)&destBuffer, needLen); 
 
    // wait for transfer completion 
    while (READ_BIT(huart1.Instance->SR,USART_SR_TC)==0) {asm("nop");} 
} 



Lesson H: 

In previous lessons, we’ve created proof of concept 

code for transmitting and receiving data over UART. 

Now we are going to transform this code into small 

library with user-friendly set of functions. Remember, 

we want to make fast and simple multi-port library 

which works on any STM32 microcontroller series. 



Create uart.h file and define COM_TPort structure: 

#include "stm32f1xx_hal.h" // For accessing stm32 HAL data structures 
#include "stdbool.h"       // For boolean type support 
#include "string.h"        // For memset() function 
 
typedef struct 
{ 
    UART_HandleTypeDef* huartPtr; // Pointer to HAL’s UART port 
    volatile uint32_t* ndtrPtr;   // Pointer to NDTR register 
    uint8_t* rxBufPtr;            // Pointer to Receive buffer 
    uint16_t rxBufSize;           // Size of Receive buffer 
    uint16_t rxPos;               // Current position for processing 
} COM_TPort; 



Add array for storing our ports and function for port selection: 

// --- uart.h --- 
#define COM_MAX_NUM 8 

 
// --- uart.c --- 
COM_TPort* myPortPtr;          // pointer to current port 
COM_TPort myPort[COM_MAX_NUM]; // port array 
 
void COM_Select(uint8_t n) 
{ 
    // Current port pointer will help us to  
    // avoid code bloating with indexes like myPort[…] 
    myPortPtr=&myPort[n]; 
} 



Initialization function fills structures similar to previous lesson: 

void COM_Init(uint8_t n,                        // Port number 0 to COM_MAX_NUM-1 
                  UART_HandleTypeDef *huartPtr, // Pointer to HAL’s UART port 
                  void *rxBufPtr,               // Pointer to receive buffer 
                  uint16_t rxBufSize)           // Receive buffer size 
{ 
    COM_Select(n);                  // Select myPort[n] as current port 
    myPortPtr->huartPtr = huartPtr; // Save HAL’s UART pointer and NDTR to myPort[n] 
    myPortPtr->ndtrPtr= &(myPortPtr->huartPtr->hdmarx->Instance->CNDTR); 
 
    myPortPtr->rxBufPtr= rxBufPtr;    // Save receive buffer pointer to myPort[n] 
    myPortPtr->rxBufSize = rxBufSize; // Save receive buffer size to myPort[n] 
    myPortPtr->rxPos = 0;             // Initialize processing position to zero 
 
    memset((uint8_t *) rxBufPtr, (char) 0, rxBufSize); // Clear receive buffer (optional) 
    HAL_UART_Receive_DMA(huartPtr, (uint8_t *) rxBufPtr, rxBufSize); // Start DMA 
} 



This function waits for UART transfer completion: 

 

 

 

 

 

It’s based on code we’ve created in “Lesson G”. It blocks 

execution until USART_SR_TC bit is set. 

void COM_WaitTxDone(void) 
{ 
    while (READ_BIT(myPortPtr->huartPtr->Instance->SR,USART_SR_TC)==0) 
    { 
        asm("nop"); 
    } 
} 



blocking

This function writes arbitrary number of bytes (blocking mode): 

 

 

 

 

 

Function sends Size bytes from *pData memory location and blocks 

execution until USART_SR_TC bit is set. 

void COM_Write(void *pData, uint16_t Size) 
{ 
    COM_WaitTxDone(); // ensure previous transfer complete 
    HAL_UART_Transmit_DMA(myPortPtr->huartPtr, pData,Size); 
    COM_WaitTxDone(); // wait till transfer completion 
} 



non-

This function writes arbitrary number of bytes (non-blocking): 

 

 

 

 

Main difference between COM_Write() and COM_WriteFast() is that 
Fast version exits immediately after HAL_UART_Transmit_DMA() 
execution without waiting for transfer completion. We’ll choose 
function type depending on application. 

void COM_WriteFast(void *pData, uint16_t Size) 
{ 
    COM_WaitTxDone(); // wait for previous transfer is complete 
    HAL_UART_Transmit_DMA(myPortPtr->huartPtr, pData,Size); 
} 



This function is based on code from “Lesson D”: 

bool COM_ComReadByte(uint8_t *b) 
{ 
    uint16_t dmaPos=myPortPtr->rxBufSize-*myPortPtr->ndtrPtr; 
    if (dmaPos!=myPortPtr->rxPos) 
    { 
        *b=(myPortPtr->rxBufPtr)[myPortPtr->rxPos]; 
        myPortPtr->rxPos++; 
        if (myPortPtr->rxPos==myPortPtr->rxBufSize) {myPortPtr->rxPos=0;} 
        return true; // byte was successfully read to “b” variable 
    } 
    return false; // byte was not read (no new data in rxBuf) 
} 



This function is based on code from “Lesson F”: 

bool COM_Read(uint8_t *destBuffer, uint16_t needLen) 
{ 
    uint16_t UART_BUFFER_SIZE=myPortPtr->rxBufSize; // To keep code changes minimal 
    uint16_t rxPos=myPortPtr->rxPos;                // compared to “Lesson F” 
 
    // Available data length calculation for normal and split case: 
    uint16_t dmaPos=UART_BUFFER_SIZE-*myPortPtr->ndtrPtr; 
    uint16_t dataLen=0; 
    if (dmaPos>rxPos) { dataLen=dmaPos-rxPos; } 
    if (dmaPos<rxPos) 
    { 
        dataLen=UART_BUFFER_SIZE-rxPos; 
        dataLen+=dmaPos; 
    } 
 
// …continued on next page 



Two cases: 

// …check previous page 
if (dataLen>=needLen) // if we have enough data in circular array 
{ 
    if(rxPos+needLen-1<UART_BUFFER_SIZE) // copy data for normal case 
    { 
        memmove((uint8_t *)&destBuffer[0],(uint8_t *)&(myPortPtr->rxBufPtr)[rxPos],needLen); 
    } 
    else // copy in two steps if data is split (second case) 
    { 
        uint16_t tailLen=UART_BUFFER_SIZE-rxPos; 
        uint16_t headLen=needLen-tailLen; 
        memmove((uint8_t *)&destBuffer[0],(uint8_t *)&(myPortPtr->rxBufPtr)[rxPos],tailLen); 
        memmove((uint8_t *)&destBuffer[tailLen],(uint8_t *)&(myPortPtr->rxBufPtr)[0],headLen); 
    } 
// …continued on next page 



This function is based on code from “Lesson F”: 

 

 

 

 

We kept code changes minimal, e.g. replaced #define by variable 

with same name and created rxPos to avoid long lines of text: 

// check previous page 
        rxPos+=needLen; // increment our processing position by read amount 
        if (rxPos>=UART_BUFFER_SIZE) { rxPos-=UART_BUFFER_SIZE;} 
        myPortPtr->rxPos=rxPos; // save processing position to current port (one of myPort[n]) 
        return true;            // data copied successfully 
    } 
    return false; // error, not enough data in circular buffer 
} 

    uint16_t UART_BUFFER_SIZE=myPortPtr->rxBufSize; // New can reuse code from “Lesson F” 
    uint16_t rxPos=myPortPtr->rxPos;                // Avoided repeating of myPortPtr->rxPos  



Library can be used after adding function headers to uart.h file: 

extern void COM_Select(uint8_t n);                     // Set current port 
 
extern void COM_Init(uint8_t n,                        // Initialize port n 
  UART_HandleTypeDef *huartPtr,    // HAL’s UART handler 
  void *rxBufPtr,                  // RX buffer pointer 
  uint16_t rxBufSize);             // RX buffer size 
 
extern void COM_Write(void *pData, uint16_t Size);     // Blocking write 
extern void COM_WriteFast(void *pData, uint16_t Size); // Non-blocking write 
extern bool COM_ReadByte(uint8_t *b);                  // Read single byte 
extern bool COM_Read(uint8_t *destBuffer, uint16_t needLen); // Read bytes 



Lesson I:

Our UART library is almost ready to be used! To make it’s even 
better, we are going to add some more features. 

 

In this lesson, you will learn: 

* How to add support for more microcontroller series. 

* How to add timeout for read operations and simple way to 
keep track of errors. 

* How to disable framing error checks and why it is important. 

* How to add support for RS-485 transfers. 



Adding fields for reading timeouts/errors, and RS-485 support: 

#include "stm32f1xx_hal.h" // For accessing stm32 HAL data structures 
#include "stdbool.h"       // For boolean type support 
#include "string.h"        // For memset() function 
 
typedef struct 
{ 
    UART_HandleTypeDef* huartPtr; // Pointer to HAL’s UART port 
    volatile uint32_t* ndtrPtr;   // Pointer to NDTR register 
    uint8_t* rxBufPtr;            // Pointer to Receive buffer 
    uint16_t rxBufSize;           // Size of Receive buffer 
    uint16_t rxPos;               // Current position for processing 
    uint16_t timeOut;             // New: Timeout for read operations 
    bool rxFail;                  // New: Receive failure flag 
    void (*_rs485tx) (void);      // New: Switch to TX mode callback (for RS-485) 
    void (*_rs485rx) (void);      // New: Switch to RX mode callback (for RS-485) 
} COM_TPort; 



STM32 microcontroller series have minor differences in some 

structure names. Correct names can be substituted using defines:  

// Select STM32 microcontroller family from F1, F4 and H7 by uncommenting on of lines. 
#define STM32F1  
//#define STM32F4 
//#define STM32H7 
 
#ifdef STM32F1 
#include "stm32f1xx_hal.h" 
#define MY_ISR(p) p->huartPtr->Instance->SR 
#define MY_ISR_TC USART_SR_TC 
#define NDTR_PTR(p) &(p->huartPtr->hdmarx->Instance->CNDTR) // No “C” letter on H7 series 
#endif 
 
// …continued on next page 



STM32F4 is the same as STM32F1, but STM32H7 is different: 

#ifdef STM32F4 // …see previous page for STM32F1 defines 
#include "stm32f4xx_hal.h" 
#define MY_ISR(p) p->huartPtr->Instance->SR 
#define MY_ISR_TC USART_SR_TC 
#define NDTR_PTR(p) &(p->huartPtr->hdmarx->Instance->CNDTR) // No “C” letter on H7 series 
#endif 
 
#ifdef STM32H7 
#include "stm32h7xx_hal.h" 
#define MY_ISR(p) p->huartPtr->Instance->ISR // No “I” letter on F1 and F4 series 
#define MY_ISR_TC USART_ISR_TC 
#define NDTR_PTR(p) &(((DMA_Stream_TypeDef*)p->huartPtr->hdmarx->Instance)->NDTR) 
#endif 



Modify COM_Init() function to add support for newly added defines 

for F1, F4 and H7 series: 

 

 

 

and  COM_WaitTxDone() function: 

// replace 
myPortPtr->ndtrPtr= &(myPortPtr->huartPtr->hdmarx->Instance->CNDTR); 
// with 
myPortPtr->ndtrPtr=NDTR_PTR(myPortPtr); 

void COM_WaitTxDone(void) 
{ 
    while (READ_BIT(MY_ISR(myPortPtr),MY_ISR_TC)==0){asm("nop");} 
} 



Add timeOut to COM_Init() function arguments and save it to 

relevant field of myPort[] array: 

void COM_Init(uint8_t n, 
                  UART_HandleTypeDef *huartPtr, // HAL’s UART pointer 
                  void *rxBufPtr,     // Receive buffer pointer 
                  uint16_t rxBufSize, // Receive buffer size 
                  uint16_t timeOut)   // New: timeout in milliseconds 
{ 
    // … some existing code above 
    myPortPtr->timeOut = timeOut; // New: set myPort[]->timeOut=… 
    myPortPtr->rxFail = false;    // New: clear timeout error flag 
    // … some existing code below 
} 
 



Rename COM_ReadByte() to COM_ReadByteTimeout() and modify it 

as shown below: 

bool COM_ReadByteTimeout(uint8_t *b, uint16_t timeOut) 
{ 
    uint16_t dmaPos=myPortPtr->rxBufSize-*myPortPtr->ndtrPtr; 
    uint32_t tickStart=HAL_GetTick(); // New: Timout loop 
    while ( (dmaPos==myPortPtr->rxPos) && ((HAL_GetTick() - tickStart) < timeOut) ) 
    { 
        dmaPos=myPortPtr->rxBufSize-*myPortPtr->ndtrPtr; 
    } 
 
    if (dmaPos!=myPortPtr->rxPos) 
    { 
        *b=(myPortPtr->rxBufPtr)[myPortPtr->rxPos]; 
        myPortPtr->rxPos++; 
        if (myPortPtr->rxPos==myPortPtr->rxBufSize) {myPortPtr->rxPos=0;} 
        return true; 
    } 
    myPortPtr->rxFail=true; // New: RX failure flag is set 
    return false; 
} 



Create two new functions for reading single byte: 

// Fast function exits immediately if circular buffer have no new bytes 
bool COM_ReadByteFast(uint8_t *b) 
{ 
    return COM_ReadByteTimeout(b,0); // zero timeout 
} 
 
// Normal function waits up to “timeOut” milliseconds 
bool COM_ReadByte(uint8_t *b) 
{ 
    return COM_ReadByteTimeout(b,myPortPtr->timeOut); 
} 



Rename COM_Read() to COM_ReadTimeout() and modify it’s 

beginning as shown below: 

 // …some code above 
uint16_t dmaPos=UART_BUFFER_SIZE-*myPortPtr->ndtrPtr; 
uint16_t dmaPosOld=dmaPos; 
uint32_t tickStart=HAL_GetTick(); 
 
// Timeout loop: 
do { 
    dmaPosOld=dmaPos; 
    dmaPos=UART_BUFFER_SIZE-*myPortPtr->ndtrPtr; 
    if (dmaPos!=dmaPosOld) {tickStart=HAL_GetTick();} // Reset timeout counter if new byte arrived 
    if (dmaPos>rxPos) { dataLen=dmaPos-rxPos; }       // Case 1: simple case 
    if (dmaPos<rxPos)                                 // Case 2: data packet is split by array boundary 
    { 
        dataLen=UART_BUFFER_SIZE-rxPos; // Calculating “tail” length 
        dataLen+=dmaPos;                // Adding “head” length 
    } 
} while ( (dataLen<needLen) && ((HAL_GetTick() - tickStart) < timeOut) ); // Check timeout loop exit requirements 
// …some code below 



Update COM_ReadTimeout() ending part as shown below: 

// …some code above 
if (timeOut>0) myPortPtr->rxPos=dmaPos; // New: abandon unread bytes 
myPortPtr->rxFail=true;                 // New: update RX fail flag 
return false; 
// …function ends here 



Create two new functions for reading multiple bytes: 

 
// Fast function exits immediately if circular buffer have no new bytes 
bool COM_ReadFast(uint8_t *destBuffer, uint16_t needLen) 
{ 
    return COM_ReadTimeout(destBuffer, needLen,0); // zero timeout 
} 
 
// Normal function waits up to “timeOut” milliseconds 
bool COM_Read(uint8_t *b) 
{ 
    return COM_ReadTimeout(destBuffer, needLen, myPortPtr->timeOut); 
} 



Add two functions to clear and check data receiving failures: 

 

 

 

 

 

Example on rxFail flag usage will be provided in next lessons. 

void COM_CleanRxFail(void) // Clean failure flag 
{ 
    myPortPtr->rxFail=false; 
} 
 
bool COM_RxFail(void)      // Get failure flag 
{ 
    return myPortPtr->rxFail; 
} 



  extern void COM_Select(uint8_t n);                     // Set current port 
 
extern void COM_Init(uint8_t n,                        // Initialize port n 
  UART_HandleTypeDef *huartPtr,  // HAL’s UART handler 
  void *rxBufPtr,                // RX buffer pointer 
  uint16_t rxBufSize,            // RX buffer size          
                        uint16_t timeOut);             // Read timeout (ms) 
 
extern void COM_Write(void *pData, uint16_t Size);     // Blocking write 
extern void COM_WriteFast(void *pData, uint16_t Size); // Non-blocking write 
 
extern bool COM_ReadByteFast(uint8_t *b);              // Read byte 
extern bool COM_ReadByte(uint8_t *b);                  // Read byte (+timeout) 
extern bool COM_ReadFast(uint8_t *destBuffer, uint16_t needLen); // Read bytes 
extern bool COM_Read(uint8_t *destBuffer, uint16_t needLen);     // Read bytes (+timeout) 



STM32 UART framing error check is an interesting feature for 

detecting inconsistences in UART waveform. But it should be only 

used when relevant error flags are taken care of! In other words, 

there must be some code that handles it. Otherwise, our device 

sooner or later will stop responding to USART commands.  

In next modules, we are going to use CRC32 checksums, AES 

encryption and transmission retry algorithms. Thus, disabling 

framing error checking is best choice. We need UART peripheral 

with predictable behavior. 



To disable framing error checking, add this code after UART 

initialization in COM_Init() function: 

 

 

In most cases, our device will not pass hot-plug test if framing 

error bits are set and there is no framing errors handling 

implemented. We do not want our device to mysteriously freeze 

because of minor EMI interference, static surge or simple cable re-

connection. 

CLEAR_BIT(huartPtr->Instance->CR3, USART_CR3_EIE); 

CLEAR_BIT(huartPtr->Instance->CR1, USART_CR1_PEIE); 



Modify COM_Write() function by add RS-485 TX/RX callbacks: 

 

 

 

 

 

When COM_WriteFast() is used, TX/RX state should be controlled in 

user’s code. 

void COM_Write(void *pData, uint16_t Size) 
{ 
    COM_WaitTxDone();      // Wait for previous TX completion (if any) 
    myPortPtr->_rs485tx(); // New: Set transceiver to TX mode 
    HAL_UART_Transmit_DMA(myPortPtr->huartPtr, pData,Size); 
    COM_WaitTxDone(); 
    myPortPtr->_rs485rx(); // New: Set transceiver to RX mode 
} 



Add dummy callback function: 

 

 

This function will be called if RS-485 callbacks are not set.  

 

Add callbacks initialization in COM_Init() function: 

void dummy485() { } // Dummy callback function 

myPortPtr->_rs485tx=dummy485; // RS-485 transmit mode (tx) 
myPortPtr->_rs485rx=dummy485; // RS-485 receive mode (rx) 



Add function to set user callbacks for RS-485 mode selection: 

void UART_SetCallbacks485(void (*f485tx)(void), void (*f485rx)(void)) 
{ 
    myPortPtr->_rs485tx=f485tx; // transmit mode callback 
    myPortPtr->_rs485rx=f485rx; // receive mode callback 
    myPortPtr->_rs485rx();      // set receive mode on start 
} 



Example of setting RS-485 callbacks from main() function: 

void rs485tx(void) // Callback #1 to control RS-485 transceiver chip 
{ 
    HAL_GPIO_WritePin(GPIOA, GPIO_PIN_12,GPIO_PIN_SET); // TX Mode 
    HAL_Delay(1); 
} 
 
void rs485rx(void) // Callback #2 to control RS-485 transceiver chip 
{ 
    HAL_GPIO_WritePin(GPIOA, GPIO_PIN_12,GPIO_PIN_RESET); // RX Mode 
} 
 
// Place this line right after COM_Init(): 
UART_SetCallbacks485(rs485tx,rs485rx); 



Lesson J: 

Adding our UART library to any project is pretty straightforward. First, 
we use STM32CubeIDE’s “Device Configuration Tool” and 

* Enable all required UART ports 

* Enable “USART global interrupt” for all ports 

* Enable DMA TX and RX requests for all ports 

* Set RX DMA mode to “Circular mode” for all ports 

* Generate code, add uart.h to includes, define buffer arrays 

* Initialize each port in main.c using COM_Init() 

* Select current port using COM_Select() 

* Send/receive data using COM_Read(), COM_Write() 



  

 

// This example answers [0x55] to single byte command [0x01] 
// … Variables: 
#define UART_BUFFER_SIZE 128               // circular buffer size 
__IO uint8_t uartBuffer[UART_BUFFER_SIZE]; // circular buffer array 
 
// … Initialization COM_Init(number,&handle,&buffer,size,timeout): 
COM_Init(0, &huart1, (uint8_t *) &uartBuffer, UART_BUFFER_SIZE, 100); 
 
// … Main() loop: 
uint8_t header; 
if (COM_ReadFast((uint8_t *)&header,1) && (header==0x01)) 
{ 
    uint8_t answer=0x55; 
    COM_Write((uint8_t *)&answer,1); 
} 



  // This example outputs 4-byte temperature value to [0x02] command 
// Receiving side can convert temperature back using float floatTemp=intTemp/1000.0; 
float floatTemp=-60.3; // -60.3 Deg C 
uint8_t header;        // single byte command 
if (COM_ReadFast((uint8_t *)&header,1)) switch(header) 
    { 
        case 0x01: // command [0x01], answer [0x55]. Can be used for device detection 
        { 
            uint8_t answer=0x55; 
            COM_Write((uint8_t *)&answer,1); 
            break; // command 0x01 
        } 
        case 0x02: // command [0x02], answer is [b1] [b2] [b3] [b4] 
        { 
            int32_t intTemp=round(floatTemp*1000); // convert float to int32 
            COM_Write((uint8_t *)&intTemp,4);      // send int32 
            break; // command 0x02 
        } 
    } 



  
// Adding third command [0x03] [length N] [N x bytes] 
// Sends [N x bytes] back to serial port 
uint8_t header; 
uint8_t length; 
 
if (COM_ReadFast((uint8_t *)&header,1)) switch(header) 
{ 
    case 0x01: //… code from previous step for command [0x01] 
    case 0x02: //… code from previous step for command [0x02] 
    case 0x03: // Warning! Command [0x03] doesn’t check data length for simplicity! 
    { 
        COM_Read((uint8_t *)&length,1);           // read packet “length” (1-byte) 
        COM_Read((uint8_t *)&tempBuffer,length);  // read [N x bytes] 
        COM_Write((uint8_t *)&tempBuffer,length); // send [N x bytes] 
        break; // command 0x03 
    } 
} 



  // Main difference with single port example is that we must add two more receive 
// buffers uartBuffer, and run COM_Init() function for each UART handle. 
#define UART_BUFFER_SIZE 128 
#define TEMP_BUFFER_SIZE 100 
__IO uint8_t uartBuffer[3][UART_BUFFER_SIZE]; // three receive buffers 
__IO uint8_t tempBuffer[3][TEMP_BUFFER_SIZE]; // three temporary buffers 
// Note that we can use single temporary buffer tempBuffer if COM_Write() is used, 
// but for non-blocking COM_WriteFast() we should use separate buffer. 
 
//… Initializing three ports 
COM_Init(0, &huart1, (uint8_t *) &uartBuffer[0], UART_BUFFER_SIZE, 100); 
COM_Init(1, &huart2, (uint8_t *) &uartBuffer[1], UART_BUFFER_SIZE, 100); 
COM_Init(2, &huart3, (uint8_t *) &uartBuffer[2], UART_BUFFER_SIZE, 100); 
// Select port number by using COM_Select() before calling COM_Read() and COM_Write() 
 
//… Three temperature values 
float floatTemp[3]={-60.3,18.0, 121.5 }; // -60.3, 18, 121.5 Deg C 
 
// Continued on next page 



  // Modified example from “Step 3”, loop through three ports: 
for (int portNum=0;portNum<3;portNum++) 
{ 
    COM_Select(portNum); // Select current port for COM_Read()/COM_Write() operations 
    if (COM_ReadFast((uint8_t *)&header,1)) switch(header) 
    { 
        case 0x01:{ uint8_t answer=0x55; COM_Write((uint8_t *)&answer,1); break;} //[0x01] 
        case 0x02:{ int32_t intTemp=round(floatTemp[portNum]*1000); 
                    COM_Write((uint8_t *)&intTemp,4); break; } // Command [0x02] 
        case 0x03: // Command [0x03] [length] [length x data bytes] 
        { 
         COM_Read((uint8_t *)&length,1);                    // read [length] 
         COM_Read((uint8_t *)&tempBuffer[portNum],length);  // read [length x data bytes] 
         COM_Write((uint8_t *)&tempBuffer[portNum],length); // write [length x data bytes] 
         break; // command 0x03 
        } 
    } 
} 



In above example, we use COM_ReadFast() to read first byte of 

packet. We want to avoid blocking of main loop execution with 

reading timeout if circular buffer is empty. 

Consecutive bytes are read using COM_Read(), because we do not 

want to interrupt data packet reception before it’s complete. 

* COM_ReadFast() is used when we do not want to use reading 

timeouts, e.g. to check if first byte of data packet is arrived 

* COM_Read() is used when we want to use reading timeouts 



In most cases, COM_Write() is best choice, because it guarantees 

that UART transfer is complete, and write buffer can be modified 

freely. COM_WriteFast() can be convenient to run heavy 

calculations and DMA data transfers in parallel. 

* COM_WriteFast() doesn’t wait for current transfer completion, 

but will wait if any previous transfer is not complete. Thus, we 

still should avoid using this function inside any interrupts. 

* COM_Write() waits for current transfer completion before 

function execution is complete.  



Single-byte and multi-byte read/write functions compared: 

// single-byte read function 
if (COM_ReadByteFast((uint8_t *)&header)) { … } 
 
// replaced by multi-byte read with length argument 1 
if (COM_ReadFast((uint8_t *)&header,1)) { … } 
 
// we can implement single-byte read function using multi-byte read function 
bool COM_ReadByteFast(uint8_t *b) 
{ 
    COM_ReadFast(b,1); 
} 



More modules on STM32’s UART are being prepared! 

*Checksum calculation and retry algorithms 

*Communication protocols and how to work with them 

*Custom bootloader, encryption and firmware update 

*UART to UART bridging over DMA 

*Data pumping for DIY oscilloscopes, audio, etc. 

*Porting STM32 library to PIC32MK or other MCUs 



Download accompanying examples and PDF version of this STM32 

course: 

* At website www.thundertronics.com  

* Check links under videos on this YouTube channel: 

https://www.youtube.com/@ThundertronicsOfficial 

http://www.thundertronics.com/
https://www.youtube.com/@ThundertronicsOfficial

